Washington State University
MAJOR CURRICULAR CHANGE FORM - - COURSE
(Submit original signed form and ten copies to the Registrar’s Office, zip 1035.)

<table>
<thead>
<tr>
<th>.Future Effective Date: 09/19/2013</th>
<th>□ New course</th>
<th>□ Temporary course</th>
<th>□ Drop service course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(effective date cannot be retroactive)</td>
<td>□ There is a course fee associated with this course (see instructions)</td>
<td></td>
</tr>
</tbody>
</table>

□ Variable credit
□ Increase credit (former credit ___)
□ Number (former number ___)
□ Crosslisting (between WSU departments)
(Must have both departmental signatures)
□ Conjoint listing (400/500)
□ Request to meet Writing in the Major [M] requirement (Must have All-University Writing Committee Approval)
□ Request to meet GER in _______ (Must have GenEd Committee Approval)
□ Professional course (Pharmacy & Vet Med only)
☐ Graduate credit (professional programs only)
□ Other (please list request)

<table>
<thead>
<tr>
<th>MGTOP</th>
<th>556</th>
<th>Advanced Business Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>course prefix</td>
<td>course no.</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>___</td>
<td>Advanced Business Modeling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>03</th>
<th>3</th>
<th>0</th>
<th>0</th>
<th>Admission to the MBA, Master of Accounting, or Business PhD programs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>credit</td>
<td>lecture hrs</td>
<td>lab hrs</td>
<td>studio hrs</td>
<td>prerequisite</td>
</tr>
<tr>
<td>per week</td>
<td>per week</td>
<td>per week</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description (20 words or less)
Spreadsheet modeling and solution of business problems using mathematical programming, Monte Carlo simulation, queuing theory, and decision analysis.

Instructor: Chuck Munson
Contact: Cheryl Oliver
Campus Zip Code: 4710

Phone number: 335-3076
Email: munson@wsu.edu
Phone number: 335-2363
Email: oliverc@wsu.edu

- Please attach rationale for your request, a current and complete syllabus, and explain how this impacts other units in Pullman and other branches (if applicable).
- Secure all required signatures and provide 10 copies to the Registrar’s Office.

Chair/date
Dean/date
General Education Com/date

Chair (if crosslisted/interdisciplinary) *
Dean (if crosslisted/interdisciplinary) *
Graduate Studies Com/date

All-University Writing Com/date
Academic Affairs Com/date
Senate/date

*If the proposed change impacts or involves collaboration with other units, use the additional signature lines provided for each impacted unit and college.
MgtOp 556—Advanced Business Modeling
Washington State University
Spring 2014
Course Syllabus

Instructor Information
Professor: Dr. Chuck Munson
Office: Todd Hall Room 471
Phone: 335-3076
E-Mail: munson@wsu.edu
Office Hours: TBD

Course Description
3 Course Prerequisite: Admission to the MBA, Master of Accounting, or Business PhD programs. Spreadsheet modeling and solution of business problems using mathematical programming, Monte Carlo simulation, queuing theory, and decision analysis.

Course Overview
This course will cover the concepts and methods of Management Science, which involves applying relatively simple tools to solve complex business problems. It also provides a foundation in modeling with spreadsheets. Successful completion of the course will help students become more skilled builders and consumers of models and model-based analyses. As a result of this course, students will become more confident in understanding and using models, both in other courses and on the job. The focus will be on managerial application and understanding of the techniques, rather than on their rigorous mathematical development. Material learned in this course will be particularly useful to MBA students who will pick up significant new modeling, consulting, and Excel skills.

With spreadsheets being actively used on more than 90% of office desks in the workplace today, companies are highly valuing employees with strong Excel skills. While nearly everyone lists “Excel skills” on their resume an area of expertise, few people actually know how to create Excel applications to be truly self-contained decision-support systems that can be confidently passed around the company and used by others.

Student Learning Outcomes
At the end of this course, students will be able to:
1. Engineer user-friendly spreadsheets.
2. Apply Visual Basic concepts to create front-end and back-end spreadsheet applications that result in more professionally developed software.
3. Translate business decision problems into mathematical models and select appropriate mathematical solution techniques.
4. Formulate, solve, and interpret practical decision-making and planning models.
5. Confidently apply techniques of linear and integer programming, as well as Monte Carlo simulation, decision analysis, and queuing theory.
6. Describe several real-world applications of management science techniques.
Required Course Material

2. The student edition of Palisade’s Decision Tools® Suite accompanying the text, including @RISK and RISKOptimizer for simulation, Precision Tree for decision analysis, TopRank for sensitivity analysis, and Evolver for optimization.

3. Excel files from the textbook available for download on the textbook website.

4. Additional articles (available in Cougar Copies).

5. Other files available on the course website.

Optional Course Material

Grading

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Short Excel Assignments</td>
<td>6%</td>
</tr>
<tr>
<td>Six Problem Sets</td>
<td>25%</td>
</tr>
<tr>
<td>Modeling Case</td>
<td>10%</td>
</tr>
<tr>
<td>Modeling Project</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>21%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>23%</td>
</tr>
<tr>
<td>Short Excel Assignments</td>
<td></td>
</tr>
</tbody>
</table>

Spreadsheets comprise an integral part of this course. While no particular spreadsheet skills are required by students entering the class, they will be expected to become reasonably proficient spreadsheet developers by the end of the semester. To help learn or review certain basic concepts in Excel, three short assignments will be given. These must be completed individually. As further reference, the author of the textbook has provided a fairly comprehensive Excel tutorial, a copy of which is available on our course website.

Problem Sets

Six problem sets will be assigned during the semester. These are designed to give students practice in applying the quantitative and modeling techniques learned in class. Typically, the problem sets will be handed out one week prior to the due date. The lowest problem set score of the six will be dropped; therefore, makeup opportunities may not typically be granted.

Modeling Case

A modeling case will be assigned in this course based on queuing theory. It will be designed to present a more comprehensive problem for the students to work on.
Modeling Project

Students will be assigned a comprehensive group project to be turned in on the last day of class. The spreadsheet application should include a good amount of Visual Basic applications on both the front end and the back end. A short write-up should accompany the spreadsheet. A portion of the assignment grade will be based on a 15-minute oral presentation. The students in the audience will be asked to assess and rank-order the presentations from all of the other groups. Part of the criteria will included a “coolness” or “wow” factor. Hopefully, students will be able to include the finished products in their electronic portfolios as evidence to potential future employers about their Excel skills. The groups will have four or five members each.

Exams

This course will have a midterm and a final exam. The exams will be open book, open notes and will be mainly designed to see if 1) the students have understood some of the important concepts covered in the course, 2) have read the material, and 3) can apply what they have learned in (somewhat) new situations.

Prior to each exam, a practice exam will be made available on the course web site. Note: These sample exams are meant to illustrate the types of questions that might appear on the real exams. In some cases the actual exam questions will be quite similar, but in other cases the questions will be completely different. Students are responsible for more information than is needed to successfully complete the practice exams.

Computer Requirements

Students must have access to a computer outside the classroom that has Excel 2007 or Excel 2010 installed with the “Analysis ToolPak” and “Solver” Add-Ins activated. (Presentations and notes will be based on Excel 2010.) Students will further be asked to download and install various files from the text website and the course website. Finally, students may wish to download a trial version of Classic LINDO 6.1 (www.lindo.com) to help them solve math programs. Even though Visual Basic involves some actual computer programming, completion of a course such as MIS 250 should be sufficient computing background to take this course. The textbook has generally very clear explanations about all of the programming that needs to be done.

For Persons with Disabilities

Reasonable accommodations are available for students with a documented disability. If you have a disability and may need accommodations to fully participate in this class, please visit the Access Center (Washington Building 217) to schedule an appointment with an Access Advisor. All accommodations MUST be approved through the Access Center.

Academic Integrity

Academic integrity is the cornerstone of the university. You assume full responsibility for the content and integrity of the academic work you submit. The guiding principle of academic integrity shall be that your submitted work must be your own. Any student who violates WSU’s standard of conduct relating to academic integrity (Academic Integrity Standards and Procedures at http://www.conduct.wsu.edu/) may be referred to the Office of Student Conduct and may fail the course.
As a WSU student, you have legal rights under the Family Educational Rights and Privacy Act (FERPA) for protection of your academic records. For a complete explanation of these rights, visit http://www.registrar.wsu.edu/registrar/apps/ferpa.aspx.

Campus Safety
Students should familiarize themselves with the following link regarding safety at WSU:
http://safetyplan.wsu.edu

Excel Proficiencies to List on Resume after Completing the Course

- Spreadsheet engineering techniques (e.g., form controls, data validation, cell protection, self-documentation)
- Visual Basic programming to create decision support systems
- Pivot tables
- Macro programming
- Advanced sensitivity analysis
- Linear programming and optimization
- Monte Carlo simulation

Suggested Additional Materials for the Serious Operations Researcher

A subscription to the journal Interfaces.

Final Thoughts

"If you think education is expensive—try ignorance."
--Mark Twain

"When I hear, I forget. When I see, I remember. When I do, I understand."
--Cavin Coolidge

"The only place where success comes before work is in a dictionary."
--Vidal Sassoon
“The person who knows how will always get a job, but the person who knows why will always be their boss.”
--John L. Munson

“Alex, if you’re like nearly everybody else in this world, you’ve accepted so many things without question that you’re not really thinking at all.”
--Jonah from The Goal

“I skate where the puck is going to be, not where it has been.”
--Wayne Gretzky

“It is good to have an end to journey toward; but it is the journey that matters, in the end.”
--Ursula K. LeGuin

“Even if you’re on the right track, you’ll get run over if you just sit there.”
--Unknown

“Do not go where the path may lead, go instead where there is no path and leave a trail.”
--Ralph Waldo Emerson

“A peacock that rests on his feathers is just another turkey.”
--Dolly Parton

“I hold up a calculator in class and say, ‘If all you can do is these computations, you can be replaced. I want you to think more deeply.’ ”
--Professor Jack Bookman

“I’ve failed over and over and over again in my life...And that is why I succeed.”
--Michael Jordan

Course Outline

1. **Basic Excel Skills (Week 1)**
 Description
 A short review of Excel basics will be provided.

 Optional Tutorial
 Excel Tutorial (on the course website)

2. **Spreadsheet Engineering (Week 2)**
 Description
 While spreadsheet use is almost universal in business today, *well-built* spreadsheets are hard to find. Much spreadsheet development is haphazard at best. This material will help students develop a systematic approach to their own spreadsheet development.

 Descriptions
 To create *truly* user-friendly applications, spreadsheet designers should incorporate interfaces such as professional-looking input boxes. Students will receive a fairly significant level of background on Excel’s Visual Basic Editor, which can elevate their spreadsheet skills to a whole new level.

 Readings
 Albright, Chapters 1-12, 14, and 15

4. **The Craft of Modeling (Week 7)**
 Description
 This includes a brief introduction to modeling and the role of modeling with spreadsheets in today’s business world. While modeling uses scientific tools, its essence is arguably just as much “art” as “science.” Significant time will be spent discussing the modeling process and certain modeling techniques. Visual modeling tools will be introduced.
Readings
Albright, Chapter 19

Articles (all available in Cougar Copies)

5. Waiting Lines and Queuing Theory (Week 8)
Description
Everybody hates to wait in lines. Managers need tools to help them determine the best trade-offs between waiting time (line length) and resource costs (e.g., the cost of additional checkout clerks). Queuing theory provides a framework for studying queues (or lines) and provides formulas for items such as the average waiting time in a line. A simple Excel spreadsheet will be provided to assist in queuing analysis.

6. Monte Carlo Simulation (Weeks 9-10)
Description
Simulation is a technique that measures and describes various characteristics of the bottom-line performance measure of a model when one or more values for the independent variables are uncertain. We will use the packaged software @RISK to analyze problems using simulation.

7. Mathematical Programming (Weeks 11-12)
Description
Mathematical programming represents arguably the most powerful set of tools taught in business schools. Math programs can solve a wide range of problems of significant complexity. In short, mathematical programming problems seek to maximize or minimize an objective subject to constraints on the solution space. Students will learn how to formulate programs to solve a variety of problems using Excel. We will focus on linear and integer programming, but we will also discuss nonlinear programming and math programming with multiple objectives (including goal programming).
Readings
“Linear Programming Notes” available on the course website
Albright, Chapter 17

8. Decision Analysis (Week 13)
Description
Students will be introduced to some simple decision-making tools and to decision trees. The book provides Precision Tree software to automate decision tree development and calculations in spreadsheets.
Readings
9. VBA Applications of Simulation (Week 14)
Description
The textbook provides several VBA applications in the second part of the book. Here we will study simulation applications of stock trading and queuing.
Readings
Albright, Chapters 25 and 29.

10. VBA Applications of Mathematical Programming (Weeks 14-15)
Description
The textbook provides several VBA applications in the second part of the book. Here we will study math programming applications of the Blending, Product Mix, Worker Scheduling, and Transportation problems.
Readings
Albright, Chapters 20, 21, 22, and 24

11. Sports Applications of Management Science (Week 15)
Description
We conclude the course with a collection of Interfaces articles that cover topics in sports.

Articles (all available in Cougar Copies)
Durán, Guillermo; Mario Guajardo; Jaime Miranda; Denis Sauré; Sebastián Souyris; Andrés Weintraub; and Rodrigo Wolf, “Scheduling the Chilean Soccer League by Integer Programming,” Interfaces, 37(6) (Nov.-Dec. 2007), pp. 539-552.
MgtOp 556—Advanced Business Modeling
Washington State University
Spring 2014
Course Syllabus

Instructor Information
Professor: Dr. Chuck Munson
Office: Todd Hall Room 471
Phone: 335-3076
E-Mail: munson@wsu.edu
Office Hours: TBD

Course Description
3 Course Prerequisite: Admission to the MBA, Master of Accounting, or Business PhD programs. Spreadsheet modeling and solution of business problems using mathematical programming, Monte Carlo simulation, queuing theory, and decision analysis.

Course Overview
This course will cover the concepts and methods of Management Science, which involves applying relatively simple tools to solve complex business problems. It also provides a foundation in modeling with spreadsheets. Successful completion of the course will help students become more skilled builders and consumers of models and model-based analyses. As a result of this course, students will become more confident in understanding and using models, both in other courses and on the job. The focus will be on managerial application and understanding of the techniques, rather than on their rigorous mathematical development. Material learned in this course will be particularly useful to MBA students who will pick up significant new modeling, consulting, and Excel skills.

With spreadsheets being actively used on more than 90% of office desks in the workplace today, companies are highly valuing employees with strong Excel skills. While nearly everyone lists “Excel skills” on their resume an area of expertise, few people actually know how to create Excel applications to be truly self-contained decision-support systems that can be confidently passed around the company and used by others.

Student Learning Outcomes
At the end of this course, students will be able to:
1. Engineer user-friendly spreadsheets.
2. Apply Visual Basic concepts to create front-end and back-end spreadsheet applications that result in more professionally developed software.
3. Translate business decision problems into mathematical models and select appropriate mathematical solution techniques.
4. Formulate, solve, and interpret practical decision-making and planning models.
5. Confidently apply techniques of linear and integer programming, as well as Monte Carlo simulation, decision analysis, and queuing theory.
6. Describe several real-world applications of management science techniques.
Required Course Material

2. The student edition of Palisade’s Decision Tools® Suite accompanying the text, including @RISK and RISKOptimizer for simulation, Precision Tree for decision analysis, TopRank for sensitivity analysis, and Evolver for optimization.
3. Excel files from the textbook available for download on the textbook website.
4. Additional articles (available in Cougar Copies).
5. Other files available on the course website.

Optional Course Material

Grading

<table>
<thead>
<tr>
<th>Grade</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Short Excel Assignments</td>
<td>6%</td>
</tr>
<tr>
<td>Six Problem Sets</td>
<td>25%</td>
</tr>
<tr>
<td>Modeling Case</td>
<td>10%</td>
</tr>
<tr>
<td>Modeling Project</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>21%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>23%</td>
</tr>
<tr>
<td>Short Excel Assignments</td>
<td></td>
</tr>
</tbody>
</table>

Spreadsheets comprise an integral part of this course. While no particular spreadsheet skills are required by students entering the class, they will be expected to become reasonably proficient spreadsheet developers by the end of the semester. To help learn or review certain basic concepts in Excel, three short assignments will be given. These must be completed individually. As further reference, the author of the textbook has provided a fairly comprehensive Excel tutorial, a copy of which is available on our course website.

Letter grade equivalencies and Distribution:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Final Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93% - 100%</td>
</tr>
<tr>
<td>A-</td>
<td>90% - 92.9%</td>
</tr>
<tr>
<td>B+</td>
<td>87% - 89.9%</td>
</tr>
<tr>
<td>B</td>
<td>83% - 86.9%</td>
</tr>
<tr>
<td>B-</td>
<td>80% - 82.9%</td>
</tr>
<tr>
<td>C+</td>
<td>77% - 79.9%</td>
</tr>
<tr>
<td>C</td>
<td>73% - 76.9%</td>
</tr>
<tr>
<td>Grade</td>
<td>Percentage Range</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>C-</td>
<td>70% - 72.9%</td>
</tr>
<tr>
<td>D+</td>
<td>65% - 69.9%</td>
</tr>
</tbody>
</table>

Problem Sets

Six problem sets will be assigned during the semester. These are designed to give students practice in applying the quantitative and modeling techniques learned in class. Typically, the problem sets will be handed out one week prior to the due date. The lowest problem set score of the six will be dropped; therefore, makeup opportunities may not typically be granted.

Modeling Case

A modeling case will be assigned in this course based on queuing theory. It will be designed to present a more comprehensive problem for the students to work on.

Modeling Project

Students will be assigned a comprehensive group project to be turned in on the last day of class. The spreadsheet application should include a good amount of Visual Basic applications on both the front end and the back end. A short write-up should accompany the spreadsheet. A portion of the assignment grade will be based on a 15-minute oral presentation. The students in the audience will be asked to assess and rank-order the presentations from all of the other groups. Part of the criteria will included a “coolness” or “wow” factor. Hopefully, students will be able to include the finished products in their electronic portfolios as evidence to potential future employers about their Excel skills. The groups will have four or five members each.

Exams

This course will have a midterm and a final exam. The exams will be open book; open notes and will be mainly designed to see if 1) the students have understood some of the important concepts covered in the course, 2) have read the material, and 3) can apply what they have learned in (somewhat) new situations.

Prior to each exam, a practice exam will be made available on the course web site. *Note: These sample exams are meant to illustrate the types of questions that might appear on the real exams. In some cases the actual exam questions will be quite similar, but in other cases the questions will be completely different. Students are responsible for more information than is needed to successfully complete the practice exams.*

Computer Requirements

Students must have access to a computer outside the classroom that has Excel 2007 or Excel 2010 installed with the “Analysis ToolPak” and “Solver” Add-Ins activated. (Presentations and notes will be based on Excel 2010.) Students will further be asked to download and install various files from the text website and the course website. Finally, students may wish to download a trial version of Classic LINDO 6.1 (www.lindo.com) to help them solve math programs. Even though Visual Basic involves some actual computer programming, completion
of a course such as MIS 250 should be sufficient computing background to take this course. The textbook has generally very clear explanations about all of the programming that needs to be done.

For Persons with Disabilities
Reasonable accommodations are available for students with a documented disability. If you have a disability and may need accommodations to fully participate in this class, please visit the Access Center (Washington Building 217) to schedule an appointment with an Access Advisor. All accommodations MUST be approved through the Access Center.

Academic Integrity
Academic integrity is the cornerstone of the university. You assume full responsibility for the content and integrity of the academic work you submit. The guiding principle of academic integrity shall be that your submitted work must be your own. Any student who violates WSU’s standard of conduct relating to academic integrity (Academic Integrity Standards and Procedures at http://www.conduct.wsu.edu/) may be referred to the Office of Student Conduct and may fail the course.

As a WSU student, you have legal rights under the Family Educational Rights and Privacy Act (FERPA) for protection of your academic records. For a complete explanation of these rights, visit http://www.registrar.wsu.edu/registrar/apps/ferpa.aspx.

Campus Safety
Students should familiarize themselves with the following link regarding safety at WSU:
http://safetyplan.wsu.edu

Excel Proficiencies to List on Resume after Completing the Course

- Spreadsheet engineering techniques (e.g., form controls, data validation, cell protection, self-documentation)
- Visual Basic programming to create decision support systems
- Pivot tables
- Macro programming
- Advanced sensitivity analysis
- Linear programming and optimization
- Monte Carlo simulation

Suggested Additional Materials for the Serious Operations Researcher

Final Thoughts

“If you think education is expensive—try ignorance.”
--Mark Twain

“When I hear, I forget. When I see, I remember. When I do, I understand.”
--Calvin Coolidge

“The only place where success comes before work is in a dictionary.”
--Vidal Sassoon

“The person who knows how will always get a job, but the person who knows why will always be their boss.”
--John L. Munson

“Alex, if you’re like nearly everybody else in this world, you’ve accepted so many things without question that you’re not really thinking at all.”
--Jonah from The Goal

“I skate where the puck is going to be, not where it has been.”
--Wayne Gretzky

“It is good to have an end to journey toward; but it is the journey that matters, in the end.”
--Ursula K. LeGuin

“Even if you’re on the right track, you’ll get run over if you just sit there.”
--Unknown

“Do not go where the path may lead, go instead where there is no path and leave a trail.”
--Ralph Waldo Emerson

“A peacock that rests on his feathers is just another turkey.”
--Dolly Parton

“I hold up a calculator in class and say, ‘If all you can do is these computations, you can be replaced. I want you to think more deeply.’”
--Professor Jack Bookman

“I’ve failed over and over and over again in my life...And that is why I succeed.”
--Michael Jordan

Course Outline

1. Basic Excel Skills (Week 1)
 Description
 A short review of Excel basics will be provided.

 Optional Tutorial
 Excel Tutorial (on the course website)

2. Spreadsheet Engineering (Week 2)
 Description
 While spreadsheet use is almost universal in business today, well-built spreadsheets are hard to find. Much spreadsheet development is haphazard at best. This material will help students
develop a systematic approach to their own spreadsheet development.

3. VBA Programming in Excel for Decision Support Systems (Weeks 3-6)
 Description
 To create truly user-friendly applications, spreadsheet designers should incorporate interfaces such as professional-looking input boxes. Students will receive a fairly significant level of background on Excel’s Visual Basic Editor, which can elevate their spreadsheet skills to a whole new level.
 Readings
 Albright, Chapters 1-12, 14, and 15

4. The Craft of Modeling (Week 7)
 Description
 This includes a brief introduction to modeling and the role of modeling with spreadsheets in today’s business world. While modeling uses scientific tools, its essence is arguably just as much “art” as “science.” Significant time will be spent discussing the modeling process and certain modeling techniques. Visual modeling tools will be introduced.
 Readings
 Albright, Chapter 19

 Articles (all available in Cougar Copies)

5. Waiting Lines and Queuing Theory (Week 8)
 Description
 Everybody hates to wait in lines. Managers need tools to help them determine the best trade-offs between waiting time (line length) and resource costs (e.g., the cost of additional checkout clerks). Queuing theory provides a framework for studying queues (or lines) and provides formulas for items such as the average waiting time in a line. A simple Excel spreadsheet will be provided to assist in queuing analysis.

6. Monte Carlo Simulation (Weeks 9-10)
 Description
 Simulation is a technique that measures and describes various characteristics of the bottom-line performance measure of a model when one or more values for the independent variables are uncertain. We will use the packaged software @RISK to analyze problems using simulation.

7. Mathematical Programming (Weeks 11-12)
 Description
 Mathematical programming represents arguably the most powerful set of tools taught in business schools. Math programs can solve a wide range of problems of significant complexity. In short, mathematical programming problems seek to maximize or minimize an
objective subject to constraints on the solution space. Students will learn how to formulate programs to solve a variety of problems using Excel. We will focus on linear and integer programming, but we will also discuss nonlinear programming and math programming with multiple objectives (including goal programming).

Readings
“Linear Programming Notes” available on the course website
Albright, Chapter 17

8. Decision Analysis (Week 13)
Description
Students will be introduced to some simple decision-making tools and to decision trees. The book provides Precision Tree software to automate decision tree development and calculations in spreadsheets.
Readings

9. VBA Applications of Simulation (Week 14)
Description
The textbook provides several VBA applications in the second part of the book. Here we will study simulation applications of stock trading and queuing.
Readings
Albright, Chapters 25 and 29.

10. VBA Applications of Mathematical Programming (Weeks 14-15)
Description
The textbook provides several VBA applications in the second part of the book. Here we will study math programming applications of the Blending, Product Mix, Worker Scheduling, and Transportation problems.
Readings
Albright, Chapters 20, 21, 22, and 24

11. Sports Applications of Management Science (Week 15)
Description
We conclude the course with a collection of Interfaces articles that cover topics in sports.

Articles (all available in Cougar Copies)
Durán, Guillermo; Mario Guajardo; Jaime Miranda; Denis Sauré; Sebastián Souyris; Andres Weintraub; and Rodrigo Wolf, “Scheduling the Chilean Soccer League by Integer Programming,” Interfaces, 37(6) (Nov.-Dec. 2007), pp. 539-552.